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Abstract

The object of this note is to describe certain conceptual designs in fabricating capac-
itors for high-frequency operation. Problems, in terms of high-frequency performance of
currently used capacitors are identified and new design concepts presented. Techniques
such as shorter transit times, multiple tabs for output, maximizing symmetry and lossy
foils are investigated with the goal of maximizing the frequency response of the capacitor.
This has led us to a dihedral D;,q4 unit capacitor, which can be strung together to form a
dihedral column capacitor. :
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1. Introduction

Capacitors have many applications ranging from modern electronic circuits to energy-
storage devices. They are also used over 2 wide range of frequencies and operating volt-
- ages. In the context of EMP generators, (1,2] peaking capacitors are employed in pulse
shaping (circuit function) as well as in transporting a fast wave (wave function). For
a satisfactory performance, the peaking capacitor is required to function at increasingly
higher frequencies. In other words, owing to the nature of their construction, peaking
capacitors inevitably display both short-circuit and open-circuit types of resonances, and
it is desirable to make the first open-circuit resonant frequency as high as practical. The
short-circuit resonances where the peaking capacitor behaves electrically like a low-valued
resistor do not create any problem in transporting the fast wave. For instance, in a Marx
pulser, after the closure of the output switch, the peaking capacitor is required to behave
“like 2 “conductor” and open-circuit resonances are undesirable. This is the basic problem
and our present interest is to outline a few design concepts for fabricating capacitors for
high-frequency applications. ' ' |



2. Brief Review of Problems with Capacitors in Use

A typical example of an elemental capacitor in use is shown in figure 1. It consists of
two metallic foils separated by a single or multiple layers of dielectric strips. The metallic
foils have length I, and width w and are separated by a distance d. Typical dimensions are
0.5 to 1.2m for I, about 0.1m for w and 50 to 100um for d. For example, for an assumed
& = 4.5,1 = 0.5m, w = 0.1m and d = 50um, an approximate value for the elemental
capacitor is given by |

C= e=:0ez,..1:;£ ~ 40nF (1)

which is a fairly typical number. Such elemental capacitors are required to operate nomi-
‘nally up to 10kV (say) and at high frequencies. These elemental capacitors of figure 1 are
“wound” after metallic tabs are inserted and then stacked to form a unit capacitor. This
is illustrated in figure 2. The mechanical details of fabrication and packaging are not of
present interest, since our aim is to evaluate and improve the electrical performance.

Unit capacitors can bé series connected to form a capacitor arm. Unit capacitors,
such as the ones illustrated here, have been experimentally evaluated in the past by several
researchers. The measurements have been done, for example by applying a voltage to a
capacitor assembly with respect to a ground plane and recording the output voltage across
a load at the other end. Another experimental scheme involved using a coaxial geometry
where the capacitor is used as the “inner conductor” of an approximately 50§ coaxial
transmission line (see figure 3). With the coaxial geometry [3], similar measurement of
(Vout/Vin) were made as a function of frequency.

One can make the fdllowing observations from the past experimental evaluations of
the capacitors

1. (ffou,/ f}m) is zero at DC as one would expect, (or Z;, tends to infinity).

2. The problem frequencies are where (17},,,, / 17'.") becomes small or the input impedance
Zin becomes high.

3. Resonances, described above occur at 10°s of MHz frequencies.
4. There can be significant losses as more and more unit capacitors are series connected.

5. There is reasonably good correlation between the results obtained from two-wire line
and coaxial test geometries.

The performance problems, especially the undesirable resonances can lead to more
serious problems in the intended application of such capacitors [4]. One needs to think of
improved capacitors with better high-frequency performance.
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3. Transmission-Line Model of Winding

One can easily formulate a two-conductor transmission line model of an elemental
capacitor shown in figure 1. The two conductors are the metallic foils or “plates”, and the.
transmission line formed by the foils is illustrated in figure 4. The two foils are separated
by a dielectric medium with a relative dielectric constant of ¢,. Note that the metallic foils
can be lossless (¢ = co) or lossy (o is adequately high, but ﬁmte) We can define an input
impedance Z.,, for such a ca.pamtor and formulate expressions for it under both lossless
and lossy situations.

A. Lossless foil capacitor.

When the metallic foils are lossless, i.e., the conductivity o = oo, the input impedance
of the capacitor can be written as

~ 2" 14¢-%¢
Gn = 9 T=emm
/Z' cosh( '71 12
Y smh(*ﬂ) Fcoth(ql (@)

where

Zf

impedance per unit length = sL' = suod/w

Y'

admittance per unit length = sC' ~ sew/d

7 = propagation constant = s/v = v/ Z'Y"

lyw,d

lil

length, width and separation of the foils
- #o = permeability of free space

€ = permittivity of the dielectric = eoe,

£o permittivity of free space

v = speed of light in the dielectric =
: Ho&
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The input impedance now becomes

- A vZ'Yy!
Ty = \/Y’ coth(~l) = 7 coth(~!)

- 2 X
= = coth(qu) =0 coth{~i) (3)

where C = C'l = ¢ wi/d = foil capacitance
We can observe that at low frequencies (i.e. 4i — 0), Z;n becomes Zige = (sC)!

as required. One can also spec1a.hze the above expression by settlng § = jw and v = jk
leading to g

B o= sCZp = (1l)coth(~i) : (4)
Zideal
or
Zin . =
= JwCZin = (kl)cot (ki) ()
Zt'deal

The above expression exhibits a first short-circuit resonance at k! = /2 and a first
unwanted open-circuit resonance at k! = m. Recall that (kl) for the present case of lossless
foils (i.e., perfect conductor foils) is simply given by

wi

kl=2 = %l\/e_ - (6)

v .

so that

-~

Z

(— I\/e:_,) cot (— t\/a) (7)

ideal

The above expression is real and displays the first unwanted resonance when the argument
of the cotangent becomes x. This unwanted resonant frequency f, is given by
4 ¥

]
¢
ff - 2[\/s—r
which is about 70 MHz if | = 1m and ¢, = 4.5. Incidentally, the first short-circuit resonance '

which occurs when (ki = 7/2) corresponds to a frequency of 35 MHz and does not lead to
any significant problem.

L]

(8)
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We can now introduce losses in the foils which tend to damp the unwanted resonances.
B. Lossy foil capacitor.

Let us say the foils are made of lossy material whose conductivity is o and permeability
B = popty. The foils then introduce additional series impedance per unit length according
as

-~

Z

7' = sL' +222 (9)
w
where the surface impedance Z, is given by
Z, ~ \/su/o (dimension Q and sometimes called {1 per square) (10)

The propagation constant 4 is now given by

T=V2Z'Y' = sVIIC' 1+ 22,
Sﬂod
1—-7 [2 3
s - r

The normalized input impedance is still given by

= = (l)coth(~l) (12)
where v is given by (11) for the lossy foils.
As before setting s = jw and v = jk, we can write for the case of lossy foils

)-Z—- — (kl)cot (ki) (13)

ideal

where

1

wl 1-75 [ 2u, |? | |
= /z 4 . 4
kL= =—\/5, [1.+ y \/wﬂoa! | (14)




(kl) can also be written in terms of the skin depth d, in the foils as

4 = | (15a)
wpo
ko= ”T’\/a[1+(1—j)p,%'-]’ (15b)

The above equation is consistent with and reduces to (6) under lossless case of ¢ = o0
ord, =0.

In concluding this section, it is observed that unwanted resonances do exist in the
foil capacitors and they can be damped to some extent by using lossy materials for the
foils. Typically aluminum foils are used in the fabrication and improvement (i.e., damping
of unwanted resonance) can be obtained by usmg lossy material such as lea.d iron or
carbon-coated foils.

14
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4. Multiple Tabs on Winding

The elemental capacitors are interconnected by means of metallic tabs, whose induc-
tance can also influence resonances. It is desirable to reduce the tab inductances. A single
tab on each foil of the capacitor is shown in figure 5a. In this configuration, it is noted
that the larger transit time ¢, governs the lower undesirable frequency.

Tab inductances can be reduced in several ways, e.g.,

a) tabs on both sides (.)f foils as in figure 5b

b) shorter tabs as in ﬁéure 6 |

c) one or more tabs at the edges as in figure 7

.d)} multiple tabs as in figure 8 _ o

When the tabs are situated at the opposite edges as in figure 5b the mutual inductance
between them is lower, because of increased separation. In figure 5b, if the tabs were
placed at the center of the foil, the unwanted resonant frequency will double in value and
the Z;, at this resonance will be halved also, because of the parallel combination of the two
sections. Shorter tabs as in figure 6 can lower the tab inductance and have been effectively
employed in some recent fabrication methods. Typically tabs tend to be long and narrow
metallic strips and lowering the length is always beneficial in lowering the inductance.

Multiple tabs at the opposite edges as indicated in figure 8 is also an efficient way of
dividing the current path lengths and lowering the tab inductances. It is noted that in the
case of multiple tabs on each foil, when the capacitor is wound, the tabs on each foil line
up and can be connected for good electrical contact.

If for example we consider N tabs (équa.lly spaced) with a spacing of 2Al, at distances
In(n =1,2...N) from one end of the foil according as

2n—1 l
= = — 16
l, N Al and Al IN (16)

?
In this case, the tfansmission line model considered above is applicable to each of the
2N elementary capacitors, so that the input impedance of the nth section is given by

Zm = ijC (kAleot(kAl) (17a)

15 -
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ewAl

Cpn = 7

(17b)

C,, above is the capacitance of the nth section. Since there are 2NN such sections in parallel,
the net input impedance is a parallel combination of Z, AR Z,-(:} ..... , 28,

in ? “in )Y %in in

If the N tabs are equally spaced with a spacing of (I/N), of course the above value

of net impedance simply 5—1&- times the input impedance of a single section according as

Lin = IN Z,-(:) any n
1 1 (H ki |
_ e Rl 18
2N jwC (ZN) cot (2N) (18)

From the above expression, one can also observe that for an open-circuit resonance
(unwanted), the resonant half wavelength is (I/2N).

With regard to the winding of the capacitor, the conventional manner of winding is
shown in figure 9. In addition, two alternate winding techniques are shown in figures 10
~and 11. The conventional spiral winding (figure 9) will be an R, capacitor if one uses
two-sided tabs on both foils. R; denotes a reflection symmetry property [5], in particular
reflection through the symmetry plane P,. The symmetries in such capacitors involve
rotation, reflection and combinations of rotations and reflections. In general, there is
no translational syminetry [5| and hence these capacitors belong to the point symmetry
group. We introduce the symmetry group notations here but their significance is discussed
in much greater detail in later sections.

Figure 10 shows that both ends of the capacitor are wound with a symmetry plane
in the center. There'is a rotation symmetry and in the symmetry group notation, figure
10 is €3, with 4 elements which are identity, 7 rotation about I, and reflections through
Py and P;. Because of the two symmetry planes, only symmetric modes (symmetric with
respect to both planes)(6, 7 and 8] couple to the output in this type of capacitor and the
anti-symmetric modes of currents or charges are essentially decoupled or are orthogonal
to the output.

On the other hand, in figure 11, we have a single symmetry plane P, in addition
to a 2-fold symmetry or C, rotation axis. A good summary description of rotation and
reflection symmetry group elements can be found in [9, 10]. Figures 1la illustrates one
way of winding from the two ends. Figure 11b is similar to figure 11a and indicates a
completed winding. Yet another possible way of winding is illustrated in figure 11c. “The
winding from the middle” is not possible with the spiral winding of figure 10, since in

figure 10, there is only one direction of rotation as opposed to two in the winding of figure

18
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Figure 9. Conventional spiral winding of the capacitor with a symmetry plane P,
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Figure 10. Spiral winding with two symmetry planes P, and P,
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1la. With reference to figure 11a, there could be many turns and we have only shown
two turns for illustration. It is a C;; symmetry group if we place two-sided tabs on foils
and the four elements are identity, (C;)y, plus both of these combined with (R;) reflection.
These notations of symmetry groups will be clarified in.later sections. :

In general, the object of introducing symmetries is that the system response (e.g.,
capacitor current or charge) can be broken into sub-groups that are mutually exclusive (or
non-interacting) and hence it becomes feasible to selectively eliminate one or the other set
of resonances. In doing so, one can obtain improved hlgh-frequency performa.nce from the
capacitors. :
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5. Maximizing Capacitor Frequency Response

The capacitor will be useful up to a frequency f;, where the first unwanted resonance
makes the input impedance unacceptably large. If the capacitor is used in a transient
application and the applied pulse has significant spectral content beyond the first unwanted
resonance of the capacitor this can lead to spectral problems in devices in which the
capacitor is installed. There exists a definite need to maximize the frequency response of
the capacitor. We can list the techniques for maximizing the frequency response, as

a) short transit times

b) multiple tabs for output
¢) maximize symmetry

d) lossy foils

Each of the above technique is briefly discussed below.
A. Short transit times

It is desirable to place the tab(s) such that transit times from all foil locations to
nearest tabs are minimized. Current flow patterns on the foils themselves can lead to
unwanted resonances and hence their path lengths should be minimized. Length to width
ratio (I/w) can also influence the transit times. It would then appear desirable to have
(¢/w) of the order of unity for a given foil area. This would result in smaller transit times
for resonating currents. This feature can be investigated experimentally. For a fixed (I/w),
(1/w) can be varied to determine if the resonant frequency is indeed the highest for {{/w)
around unity. '

B. Multiple tabs for output

This subject was briefly discussed in the previous section. Multiple tabs on each foil
help in lowering the net tab inductance. This is because of the parallel combination of
individual tab inductances. Multiple tabs also break-up the current paths and consequently
an result in an improved high frequency performance. Smaller current paths on the foil lead
to shorter transit times and higher resonant frequencies. Figure 8 earlier had illustrated
this effect. The multiple tabs are so positioned that when the capacitor is fully wound, the
corresponding tabs line up. The tabs then are connected so that they are in good electrical
contact. That is all the tabs in top foil are connected together and likewise for all the tabs
on the bottom foil. '

C. Maximizing symmetry

~ One could look at the ca.paéitor as a system with certain internal characteristics
on which there are certain current/charge modes. These modes can be decomposed into

22



subsets. By maximizing symmetry in the capacitor construction, one can selectively excite
or eliminate certain modes. Crudely, one might say that certain modes are not supported
because of the tab-coupling geometry. In other words, some modes couple to the output
and some others (the unwanted ones) are orthogonal to the output and hence decoupled
from it. So, maximizing symmetry in the capacitor can eliminate certain modal functions
and thus improve or enhance the bandwidth. For example, with the winding of figure 10
where two symmetry planes are present, the anti-symmetric modes will be absent in the
output, if they are absent in the input. -

D. Lossy foils

In the transmission line model formulated in an earlier section, we saw the effect of
a lossy foil in damping out the resonances of the capacitor. So, by a proper choice of
foil material such as carbon coated metal, or lead or iron one can reduce the “Q” of the
unwanted resonance. This has been observed mathematically and is also arguable from
physical considerations. Certain amount of losses in the foil are thus seen to be beneficial
in improving the capacitor performance.

We can now proceed to investigate the symmetry considerations in the following
sectlon

23



6. Dihedral Capacitors

In constructing the capacitors and interconnecting several of them to form a unit
capacitor, we have already observed that the concept of maximizing the symmetry helps
in improving the high-frequency performance of the capacitors. Symmetry comes in many
forms, such as rotation, reflection and combinations there of. We are restricting ourselves to
point symmetry groups, since the capacitor is a finite sized object and has no translational
symmetry. Symmetry groups have wide applications in physics and chemistry [5]. For
example, the classification of a multiatomic molecule is related to its symmetry. Also, the
underlying microscopic structure of crystals is related to the symmetry of their external
macroscopic form. In the present context, we can build a unit capacitor comprising of
“many foil capacitors and require certain symmetry properties to enhance its high-frequency
performance. "

The symmetry of a body or an object is described by the set of all transformations
(such as rotation, reflection, translation, etc.) which preserve the distance between all pairs
of points of the body or the objéct and result in a replication of the body. In other words,
after the transformation, say rotation, the body is brought into coincidence with itself. An
example of such a symmetry group is Cy which means there is one N-fold symimetry axis in
the body. Furthermore, the body is replicated by a rotation of ¢ = 27/N (N is an integer)
about the single, N-fold symmetry axis. A trivial example is if N = 1, we have replicated
the body by a rotation of 27 about the symmetry axis. This is an identity transformation.
Hence, identity is an essential element of all symmetry groups.

Once again, in the present context, we are seeking to apply symmetry considerations
to a flat or “unwound” capacitor. We are seeking to break up the winding into an equivalent
set of stacked (parallel) capacitors that allows higher symmetries. In addition, winding
may shift'the uniwanted resonance downward, possibly due to enhanced mutual inductances
and capacitors. Consequently, we are investigating “fat” capacitors that can be stacked
in parallel to form a single unit capacitor. '

Returning to the symmetry groups, Cy is a group with a single N-fold rotation axis
1o. If in addition to this rotation axis, a group has a system of 2-fold axes at right angles to
1o, one gets a dihedral group Dy. So, while Cy is uniaxial (fo), Dy has I and 11, 1o, ... 1y
system of axes, where f,, is perpendicular to fg for n = 1,2,3....N. It is also noted that
the Dy group has 2N elements, including the identity. Hammermesh [5] has also shown
that Dy is not commutative for N > 3 and it is commutative (or abelian) for N = 1 and
2.

One also has axial (R,) and transverse (R;) reflections about certain symmetry planes.
In addition, there could be diagonal symmetry planes resuiting in a reflection element (Ry).

.~ Next, we may consider symmetry groups containing rotation reflections, or equiva-
lently, adjunction of reflections to Cy. This is perhaps best illustrated with examples.

24



Figures 12a and 12b are simple examples of adjunction of reflections to Cj, consisting of
N4 number of A type plates and Np number of B type plates. The difference being, in
figure 12a N4 = Np and in figure 12b, Ny = Ng + 1. If we use the dlrect product symbol
® to denote adjunction, ‘we can write

Co: =C2Q Ry | -_ (19)

Czla=02®Rz z=1o0r2 (20)

The adjunction means that the composite group has all elements of both groups and
their mutual or cross products. The ‘t’ and ‘a’ in the subscript denote “transverse” and
“axial” corresponding respectively to “horizontal” and “vertical® in [5]. Both these groups
are commutative and each of them contains 4 elements as noted below

4 Elements of Cy; 4 Elements of C;,
1. identity (1) 1. identity 1
. 2. C; rotation about fl 2. C; rotation about fg
3. reflection through plane P;(R;} 3. reflection through planes P, or P,
i.e., RiorE,
4. C; above plus reflection R, 4. (; above plus reflections R; or R,

In this special case, note that the N-fold axis I is only 1-fold. In this sense, it can
be considered as dihedral D, since there is one € axis (10) plus one C; axis which is at
right angles to Cy. Hence it is a degenerate D;- like group with 4 elements.

We can now illustrate the N = 2 or D, dihedral group shown in figures 13 and 14.

Once again the difference between figures 13 and 14 is in the number of A and B plates.
In figure 13, N4 = Ng and in figure 14, Ny, = Np + 1 as before.
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8 Elements of D, 4Group 8 Elements of D, ,Group

1. identity (1) 1. identity (1)
2. C, rotation about fo 2. C. rotation about I,
3. C; rotation about Tl 3. () rotation about fl
4. C, rotation about I, 4. C, rotation about 1,
5. reflection through plane P,(R,) 5. reflection through P, or P,
or Pj
6. reflection through plane Ps(R;) 6. =/2 rotation & reflection through
: Pyor Pyor Py
7. m/2 rotation & reflection through plane P, 7. = rotation & reflection through

_ Py or P, or Py
8. 3m/2 rotation & reflection through plane P, 8. /2 rotation & reflection through
Fyor P, or Py

The subscript “d” in Dy 4 refers to the “diagonal” symmetry planes (between 1, and fz),
and “” in D, simply refers to the “transverse” symmetry plane that is orthogonal to the
original 2-fold axis 1,.

One could extend this type of illustration to Ds and D, as sketched in figures 15 and
16. Here, the shapes of plates can be different and as before we could have D; 4 and Dg,,
and, Dygq and Dy, division as well.

In general a Dy capacitor using circular disks as conductors (can be lossy) and tabs
is shown in figure 17. The Dy 4 symmetry group with 4N elements, and diagonal system
of axes is illustrated in figure 18. Dy 4 also has Ny = Np = Mi.e., the numbers of A and
B plates are the same. In the Dy 4 capacitor, we will have an A plate on top and a B
plate at the bottom. Of course ‘top’ and ‘bottom’ are indistinguishable and they are used
for nomenclature only. Such a dihedral capacitor (Dy 4) will have 4N elements which are,
N rotation elements including identity (i.e., 2 rotation), N elements of reflection through
each of P,.., plane and 2N rotation reflection elements.

‘As before, one can also consider Dy, symmetry group indicated in figure 19 where
Ny = Np+1, i.e., the number of A plates is one more than number of B plates. This also
has 4N elements which are N rotation, N reflection and 2N rotation reflection elements.
In both Dy g4 and Dy capacitors, the symmetry planes (Pjreck) are centered on tabs.

In the ultimate limit of N — oo, the tabs get smaller and smaller and Do, capacitor
becomes a parallel array of a circular disk capacitors.

We may now proceed to investigate the D, or the disk capacitor as a radial trans-
mission line. This forms the subject of the following section. :
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Figure 15. Djs; or D3 4, dikedral symmetry group with 12 elements (sha.pes of plates are
not unique)

Figure 16. D4 ¢ or D¢ 4, dihedral symmetry group with 16 elements (sha.pes of plates are
not unique) .
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Figure 18. Dy, dihedral capa.citlor made of M numbe

r of circular A and B plates each,
with tabs '

Figure 19. Dy, dihedral capacitor made of NA number of circular A and (N, — 1)
numbser of circular B-plates, with tabs
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7. Radial-Transmission in a D, Capacitor.

A Dg, capacitor is basically an array of circular disk capacitors, one element of which
is shown in figure 20. It can be analyzed as a radial transmission line where the prop-
agation is radially out from the center along the cylindrical radius coordinate ¥. The

telegrapher’s equations for the radial transmission line are given by

dv s
w = 41
di -
—_— = YV
av Y
where
Z' = series impedance per unit radial length
2Z
= sl + —
sL 2y
Y' = shunt admittance per unit radial lengths
= . sC'
and
1o ted o 2mY
D= iC =7

where d is the separation between disks.

(21)

(22)

(24)

(25)

In the radial transmission line of ﬁgure 20, the direction of wave propagation is the
radial coordinate ¥. A set of cylindrical coordinates (¥, ¢,2) is defined in figure 20. We
have considered an incremental length of the transmission line, which is the ring-shaped

region of length A¥.

The telegrapher’s équations above apply to this radial transmission line.

In the above equations, we also have

H

. . ~ 3
Y=V3Y = s ,u,oe[1+ 22']

Siod
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Figure 20. Disk capacitor and cylmdrzcal coordinates (¥, 4,z) for analyzing radial

transmission
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€ Suod
YV

_vZ¥v oy (27)
Yy Y se2n

The telegrapher’s equations (20) and (21) may be combined into a single second order
differential equation for I or V leading to

(28)
1 &I 11dI .
= T = 29
42 dU2 v d¥ I=0 (29)
The solutions to the above Bessel equations are
‘}(3, ‘I’) = Vg Io('}@) (30)
- |7 _
(s, ¥) = -Z—" L(v®)
_ c

(@)

where Iy and I;, are modified Bessel functions. Note that since the origin (¥
the range of interest K, and K, are absent from the solution.

= 0) is in
Since [ is in the direction of increasing ¥
- V. .1
Z'_" - - _,("dl —_ VOZc 0(‘?&)
I(:,a) Il(‘YG.)
— _9 7 Iya) (32)
27ae s I(vya) - _

. : . (/"\‘}
In the special case of s = jw and v = jk, the above expression reduces to | g
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.4k Jyka)
"~ 2mae w jJy(ka)

d ﬂ Jg(ka)
i2ma ¥V ¢ Jy(ka)

(33)

In the above equation, which incidentally can also be derived by a wave analysis, d is
the separation between the disks, a is the radius of the disk, uo and ¢ are the constitutive
parameters of the dielectric medium between the disks and the propagation constant k is

given by
22, 1°
k= wypee |1+ = (for lossy case) (34)
Jwiod
k = w e . {for lossless case) (35)

Ideally the input impedance is Z;4,, = (7wC)~! and hence we can define a factor ¢
as follows : o

Zl'n . >
¢ = = = jwC Z;,
Zs'dcal.

d_ [i5 Joka)
J27a V ¢ Ji(ka)

" eral d i Jo(ka)
J d | j2ra V ¢ Jy(ka)

(3) 3 e

This function ¢ is shown plotted in figure 21 for the lossless case, meaning that the
circular disks are made of perfect conductors. It is obvious that at dc, ¢ = 1 and it goes
through a zero at ka = 2.405 and it has an unwanted open-circuit resonance at ka ~
3.83 which is the first zero of J;. The short-circuit resonances, which are zeros of Jy are
acceptable in the sense that the capacitor behaves like an ideal short circuit. The first.

= JwC (36)
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‘open-circuit resonance occurring at ka = 3.83 limits the high-frequency performance of
such capacitors. Since there is no propagation at this and higher open-circuit resonance
frequencies.

The first open-circuit resonance occurs when

ka = -(;i Ve ra = 3.83 (38).
or
fr = 1% 'shunt resonant frequency
3.8
~ 3Xe (39)
2ra /€,
or
o 27
Ar = first open-circuit resonant wavelength = Ta X a
2ma
= — = 2, 0
g3 = 245a  (10)

Hence, the first open-circuit resonant wavelength (in the dielectric medium) is larger
than the diameter. This indicates to keep ), small (or higher frequency performance) one
has to make “a” small and ¢, large. Note that so far the discussion has been for the lossless
situation and if losses are present the propagation constant k& becomes

2z, 13
k=wuge {1+ — 41
% 1+ ] _ @

with

o
= (1 -f-J)\/% (42)

For the lossy case, we then have

Z, = surface impedance of the disk ~ \/‘Eﬁ

-

. _ Z:‘u _ EE Jg(ka) . | .
= Zideal - (2) Ji(ka) 43)
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where
_ . i
1 _j 2”'1-
k = wy 1+ — ‘/ I
w .,uos - + 4 Voo

1

= wy ket -1+.u,(1 —j)fj-l!]2 (44)

with d, being the skin depth in the lossy disk.

As in the case of the transmission line model of the 2-strip capacitor, the losses in
the disk capacitor also damp out the unwanted resonance.

Furthermore, we wish to bound Z-'.-n near the shunt resonance, so it is small compared

with the load impedance that the capacitor is designed to drive. To do this, one can_
expand (43) around the unwanted resonance o

k= ko+ Ak - (45)

This leads to Z,--,. at ko, given by

5 -4 k _1
" j2rae w Alka)

(46)

From (44), we have

d,]* o,
ka = w a/poe [1 + u, (1 - 7) E] (47)

Now consider A(kae) |
A(ka) = ka - koa © (48)

For ,u,%‘ < 1, we can write

oo el RG]
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and

Alka) >~ w a /e {1 + u.»(—'é"'l)"&"] — koa {50)
Now,
5 _d_ k Jolka)
" 7 jowae w Jy(ka)
d ka 1
o — 51
12ma*e w Afka) (51)
Substituting (50) into (51),
d AR
Zs'n = J-2ﬂ_a'2€ aV Ho€ [1 + ﬂr(l - J)E‘l A(ka:)
52
321ra A(ka.) (52)
So, one can consider A(ka). In magnitude this is minimized at
e d, S
Br | o 53
a\/fiof 1+2dl°a' | (53)

showing a slight lowering of the resonant frequency (extra 1nducta.nce) At this frequency
(w == wo with sllght correction} :

| ~ gl & 54
Alke) x-S (54)
and
G o~ & [R2d
2ra YV € p, d,
1 d [foueod?
= ¢ 55
ZO,/,u,s, ay (55)



which is real and positive as required. This expression gives the local maximum of Zm at
the first open-circuit resonance fj.

Let us assume some typica.l numbers for illustrative‘purposes.

a = 0.075m,e, =6, d =66um, 0 = 3.57 x 10" S/m,u, = 1 (aluminum foils)

3.83¢
o~ 5
fo 2%0\/3': IGHZ . ( 6)
~ 1 d od?
Dnlaiho) = Zoez fidd . 107 (57)

which is indeed a considerable improvement. The capacitance C of such a disk capacitor
is given by

Ta? 1 6 x m x (0.075 x 0.075)
= > 4 -
d 367 x 10° 66 x 10—¢

C ~ sﬁe, ~ 14.2nF (58)

If one constructs such a capacitor stack say with N, = Nz = 50, then one has
No = N4y + Np — 1 to be the total number of capacitors in the stack. Thus the net
impedance of the capacitor stack is

ar

Zo = — Z, | (59)

1
No

and in the above numerical example, the net impedance at the unwanted resonance then
becomes,

1o
7100

= 10.7m(} (at resonance) =~ = (60)

The total stack capacitance is given by
Cutack = 100 X C = 1420nF = 1.42uF (61)
and the normalized Z.-,, =¢= ij,tg;kfgn at resonance is now given by
¢ = 2';n l jwc,gluz; W Cotack Zin (at resonance) =~ 95.5 (62)
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- in place of infinity value of ¢ at resonance.

This is already a vast improvement. Further improvements, i.e., damping of resonance
is possible by using even lossier metals.

Since we have just introduced the topic of stacking the elemental capacitors, we may
describe this process in greater detail in the following section, and especially look into the
symmetry group classification of the stacked capacitors. It would indeed be desxrable to-
preserve the group-symmetric propertles even after stacking.
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8. Tab Outputs for Dy Capacitor

Dy capacitors have two versions as described earlier. They are Dy g4 and Dy, of
figures 18 and 19 respectively. Recall that there are N4y number of A disks (or plates) and
Np number of B disks (or plates) and that N4y = Ny for Dygand Ny =Ng+1for D,
symmetry groups, which are both dihedral. Each A type disk has N tabs and each B type
disk has N tabs, that line up. In other words all of the tabs on A type disks end up on each
other and similarly all of the B-disk tabs end up on each other while interleaved between
the A-disk tabs. The tabs are then connected together so that there are N sets of A-disk
tabs and N sets of B-disk tabs. At this point one has 2 options for bending the tabs. The
bending of tabs up or down is essential for stacking and the two options are, (a) A-tabs
up and B-tabs down and (b) B-tabs up and A-tabs down.

It is best to illustrate the above process of tab bending with an example of D, 4 and
D, dihedral capacitors.

Dzd and Dy, ca.pa.c1tors are showu in ﬁgures 22 and 23, along with their principal
2-fold axis 1y, a set of orthogonal axes 1; to 14 and the symmetry planes P,, Py, P, P;.

Each of the A and B disks (shape itself is not relevant for this discussion) has 2 tabs
denoted by Ay, A; for the A type disks and By, B; for the B- type disks. When N4 and
Np number of such disks are stacked with appropriate dielectric medium between every A
and B disk, we have a stacked capacitor where all corresponding tabs A, A, By, and B,
line up and get interconnected. The two options of tab bending are illustrated in figure
24. These two options can be applied to both D; 4 and Ds;. In the case of Dy 4 A and B
plates are 1nd13tmgmshable i.e., A and B plates are interchangeable because rotation is
still possible about 1I; and 1, to make the interchange, and the interconnection of stacked
capacitors also lead to D, .4 point-symmetry group. The term “point-symmetry group”

simply means, that all transformations of this symmetry group leave one point fixed in the
body.

However, in the case of D,, the bending of tabs leads to two distinguishable stacks
since there are no rotation symmetries about 1, and 1. When such stacks are intercon-
nected, the resulting capacitor is found not to be a Dy, capacitor. This is the direct
consequence of the fact that in a D, capacitor, we have one more A plates than B plates.

The above illustration leads us to conclude that Dy 4, or in general Dy 4 is the pre-
ferred capacitor since it preserves the group-symmetric property when stacked units are
themselves “stacked” or interconnected. In contrast, a stack of stacked Dy or in general
Dy is not a Dy,. For clarity of nomenclature, we heretofore call a single capacitor as an
elemental capacitor. When N number of them are stacked to form a unit it is called a
capacitor stack or a unit capacitor. Unit capacitors are then series connected to form a
column capacitor. So an elemental capacitor is the basic building block, unit capacitor are
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Figure 22. D, 4 capacitor (N4 = Np)

A-tabs
B-tabs

a) A-tabs | b) B-tabs

Figure 24. Two ways of bending the tabs, both of which can be applied to D; 4 aqd
D, above :
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the next level building blocks and the column capacitor is the end product (like a peaking
capacitor arm).

We have referred to making a column capacitor by interconnecting unit capacitors
above and this subject is pursued in greater detail in the following section.

44



9. Combining Dy 4 Unit Capacitors.

Let us say that each elemental capacitor, i.e., capacitance of one each of A and B
plates separated by a dielectric medium is Cy. Cj is roughly (truly at low frequencies)
given by the product of the permittivity of the medium and plate area divided by the
plate spacing. When N, number of A plates and Np number of B plates are stacked to
form a unit capacitor, the capacitance value C of the stack or unit capacitor is given by

C = [#of foils — 1] Cy = NoCo (63)

where Ny represents the number of dielectric “sheets”. There is one dielectric sheet, which
itself may be a composite of layered dielectric sheets, between all pairs of adjacent A and
B plates. Consequently, one has Ny number of elemental capacitors in parallel in a unit
capacitor. When Nc number of unit capacitors are series connected to form a column
capacitor, the resultant column capacitance is '

C. = net éolumn ca.pacita.nce
- C NoCy
NN (64)

In other words, in a column capacitor, there are No number of elemental capacitors in
parallel and N. number of elemental capacitors in series. N, can be greater than, equal
to or less than Nj so the column capacitance may be greater than, equal to or less than
elemental capacitance. This is purely a function of intended application. The voltage
across a unit capacitor is N_! times the total voltage across the column, all things being
equal.

Furthermore N, can be odd or even and a column of Dy 4 capacitors is a Dy, if
N, is odd. One could also show that a column of Dy .4 capacitors is a Dy, if N, is even.
The “columning” or stringing of Dy 4 capacitors is schematically shown in figure 25 for
the special case of Dy 4. As we have noted earlier Dy .4 preserves the symmetry group
upon bending of the tabs, which are essential. Therefore, Dy 4 is the preferred dihedral
capacitor. Depending upon N, (number of Dy 4s in a string) being odd or even, the
column itself is respectively Dy 4 or becomes Dy,;. Figure 25 can also be redrawn to
show the principal axes and this has been sketched in figure 26. In figure 26, we have
strung together D;, capacitors showing the N-fold (N=2) C, axis labelled I,. This is
also the axis of column capacitor. The secondary set of orthogonal axes in each D, 4 are
indicated. They are parallel to each other and uniformly spaced from one D; 4 to the next.
In figure 27a, we consider a special case of N, = even number = 8. The principal 2-fold
axis 1, = I, and the secondary C, rotation axes 1, . and 1, . Which are orthogonal to 1, N
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connection between unit D; 4 capacitors

- wm W o w

T T T T T T
] { [ NI
| : Y - \
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N N N T/
N N - :
LN ¢ N ! LN o
! ’ (2-fold)
- j . Cz,d a.XiS
T T T T T T
Unit Dy 4 capacitor .C = capacitor |

T = tab

Fime 25. | Stringing of D34 capacitors to form a column capacitor
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Figure 26. Column of Dy 4 capacitors

| Note: Each Dy 4 unit capacitor is represented by a square box with tab connections on
(\ _ mating square faces between adjacent units.
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Note that the secondary axes 1, ;a.ndi‘g 4 are 45° and 225° w.r.t. paper

b) Case of N, odd (= 9 say) D;4’s resulting in D, 4
Figure 27. A column of D34 capacitors for the two cases of N, even and odd
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are also indicated. For this special case of N, = 8, the resulting column is a D;; and has
8 elements In figure 27b, we consider the case of N, odd (= 9 say). The rotation axes 1,
and 1, « are along the “diagonals”, i.e., at 45° and 225° with respect to the plane of the
paper. The symmetry planes P, and Pb are indicated and the axis of the column is still
1. The resultlng symmetry group in this case of N, odd is still Dy 4.

In conclusion, we remark that the preferred dihedral capa.c1tor isa Dyg Which can
be strung together to form a column that is either a Dy 4 or a Dy depending on whether
an odd or even number of unit capacitors are present in a column.

The unit capacitor or a column of unit capacitors (to increase the voltage standoff)
can be fabricated in a box-like structure to make a Dj4 unit or column capacitors. The
unit capacitors themselves can be modular and the interconnection of unit capacitors is
uniquely achieved by suitable mechanical design of the box.
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10. Concluding Remarks

In designing high frequency capacitors, we have found several useful techniques and
the various underlying considerations are listed below: '

1. electrical lengths of foils {between tabs) should be kept small
" 2. the dielectric constant of the m_ediﬁm_between the foils should be high
3. multitabs on foils help in increasing the high-frequency performance

4. physical dimensions of an elemental capacitor should be kept small e.g., order of 0.1 m
for a useful bandwidth of several hundred MHz, consistent with flat foils as opposed
to windings

5. elemental capacitors can be arranged in parallel to form a unit capacitor

6. ways of multiple tabbing of the disk capacitors are illustrated, along with how they
are bent to facilitate interconnections

7. higher frequency performance is obtainable by maximizing the symmetry properties
of the capacitors (dihedral point - symmetry groups are considered and found suitable
for these capacitors)

8. same number of A and B (or + and -) plates are preferred in a stack over the option
of having one more A (or +) plate than B plates, i.e., a Dy 4 unit capacitor is the
preferred choice

9. losses in the foils {e.g., lead, iron or carbon coating) help in damping the unwanted
resonances :

10. unit capacitors are series connected to form a column capacitor

The preferred D, 4 unit is quite simple in construction. It comprises of rectangular
foils/tabs. The foils and tabs are formed of one piece of metal (or lossy metal). Square
shaped dielectric sheets are introduced between adjacent pairs of foils. The D, 4 can be
fabricated into a square box (and not necessarily cubical) if desired. D; 4 unit capacitors
- may easily be fabricated in future prototype models for experimental investigations.

In concluding this paper, it is emphasized that the design concepts presented here
should in future be experimentally optimized. A carefully designed set of experiments
of dihedral capacitors at the elemental, unit and column level are recommended for fu-
ture studies. The resonances of the column capacitor is closely linked to the resonance of
-the elemental capacitor and hence, we have focussed our attention on designing a better
elemental capacitor. Some refinement of these concepts may be in order as experimen-
‘tal results become available. It is evident that a judicious combination of concepts and
experimental results will in future lead to optimized high-frequency capacitors.
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